微信
日报
抖音

暖通空调行业最具影响力的传播平台

网罗暖通空调行业最前沿资讯

解锁暖通行业更多精彩,“抖”在这里

广告

微软研发AI换脸鉴别算法 破除DeepFake虚假信息

来源:IT之家 作者:高露

2019-11-06 11:13:15

此前DeepFake换脸在全球引发轩然**。从生成足以以假乱真的名人不雅视频开始,很多使用者将这个“换脸神器”当成了视频造假工具,并通过社交网络将虚假信息传播到全世界。DeepFake等技术出现不仅提升了换脸的真实性,其开放源代码的方式更是降低了将该等技术滥用于虚假信息制作和传播门槛。

事实上,大约30%经过AI换脸的合成照片、合成视频是人类仅凭肉眼无法识别的,很容易被当作真实信息进行再次传播。这已成为一个亟待解决的社会性问题,面对这个问题,我们应该以及可以做些什么?微软亚洲研究院给出了解决方案。

除了DeepFake,市场上存在多种换脸技术,不同算法生成的图像结果千差万别,难以使用同一个换脸鉴别模型解决所有换脸技术的进攻。与此同时,换脸鉴别模型还需要对目前不存在、但未来可能出现的换脸技术也具有判别力,如何去预测未来换脸技术的发展方向,提前布防,也是重要课题。

目前,最常被使用的AI换脸算法有三种:DeepFake、FaceSwap和Face2Face。其中,DeepFake基于大家所熟知的GAN技术,对于它所生成的脸,人类的识别率大约为75%*。FaceSwap是一个学习重建脸部特征的深度学习算法,可以对给出的图片进行模型替换,人类对于此类换脸的识别率也是75%左右*。Face2Face则是用其他真实的人脸去替换原本的人脸,不涉及人脸的生成,对于它制造的脸,人类的识别率只有41%*。作为目前学术界最大的合成视频数据库之一,由慕尼黑技术大学创建的FaceForensics数据库涵盖了经过以上三种换脸算法编辑的公开视频,以供学术研究使用。

多年来,微软亚洲研究院在人脸识别、图像生成等方向都拥有业界领先的算法和模型。在CVPR 2018上,微软亚洲研究院视觉计算组发表了论文“Towards Open-Set Identity Preserving Face Synthesis”,其中的技术能够利用开放数据集中的数据,逼真地合成保留图中人脸身份信息的图像。深厚的技术积累让研究员们对“进攻方”的技术原理有着更深刻的理解,进而能够更有针对性地研发换脸鉴别算法。

20191104143308_4234.jpg

图1:微软亚洲研究院开发的模型分别提取蒙娜丽莎和赫本图片中的身份信息和属性信息进行合成

因此,微软亚洲研究院研发的换脸鉴别算法,基于FaceForensics数据库的测试结果均超越了人类肉眼的识别率以及此前业界的最好水平*:对于DeepFake的识别率达到了99.87%,对于FaceSwap的识别率为99.66%,对于Face2Face的识别率为99.67%。

20191104143308_3763.jpg

图1:微软亚洲研究院开发的模型分别提取蒙娜丽莎和赫本图片中的身份信息和属性信息进行合成

20191104143308_1035.jpg

表2:针对未知换脸算法的识别测试结果

在微软看来,要构建可信赖的AI,必须遵循以下六大原则:公平、可靠和安全、隐私、包容、透明、责任。微软内部还成立了人工智能伦理道德委员会(AETHER),帮助微软应对AI带来的伦理和社会影响。

【版权与免责声明】

1、凡来源为V客暖通的内容,“原创”或“独家”的信息、数据及图片、报告等均为本网原创,其版权均属V客暖通所有。原创作者享有著作权,著作权受我国法律保护,未经V客暖通允许,任何媒体、网站以及微信公众平台不得引用、复制、转载、摘编或以其他任何方式使用上述内容或建立镜像。已获许可转载的,请注明“来源:V客暖通”。具体版权合作事宜,请见V客暖通法律声明页。

2、凡V客暖通注明"转载:其他(非V客暖通)"的内容,均转载自其它媒体或企业供稿(包括供稿配图),转载目的在于传递更多信息,不代表本站赞同作者观点,本站不对内容的准确性、可靠性或完整性提供任何明示或暗示的保证。

3、若发现本站有涉嫌抄袭的内容或者使用了版权图片,请与我们联系:13770777614 ,一经查实,本站将立刻删除侵权内容或版权图片。V客暖通将不承担任何法律及连带责任。

附则:对免责及版权声明的解释、修改及更新权均属于V客暖通所有。